Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection.

Identifieur interne : 001306 ( Main/Exploration ); précédent : 001305; suivant : 001307

Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection.

Auteurs : RBID : pubmed:21261274

Abstract

Laser-induced forward transfer (LIFT) has been used to print 0.6 mm × 0.5 mm polymer light-emitting diode (PLED) pixels with poly[2-methoxy, 5-(2-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as the light-emitting polymer. The donor substrate used in the LIFT process is covered by a sacrificial triazene polymer (TP) release layer on top of which the aluminium cathode and functional MEH-PPV layers are deposited. To enhance electron injection into the MEH-PPV layer, a thin poly(ethylene oxide) (PEO) layer on the Al cathode or a blend of MEH-PPV and PEO was used. These donor substrates have been transferred onto both plain indium tin oxide (ITO) and bilayer ITO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) blend) receiver substrates to create the PLED pixels. For comparison, devices were fabricated in a conventional manner on ITO substrates coated with a PEDOT:PSS hole-transporting layer. Compared to multilayer devices without PEO, devices with ITO/PEDOT:PSS/MEH-PPV:PEO blend/Al architecture show a 100 fold increase of luminous efficiency (LE) reaching a maximum of 0.45 cd/A for the blend at a brightness of 400 cd/m(2). A similar increase is obtained for the polymer light-emitting diode (PLED) pixels deposited by the LIFT process, although the maximum luminous efficiency only reaches 0.05 cd/A for MEH-PPV:PEO blend, which we have attributed to the fact that LIFT transfer was carried out in an ambient atmosphere. For all devices, we confirm a strong increase in device performance and stability when using a PEDOT:PSS film on the ITO anode. For PLEDs produced by LIFT, we show that a 25 nm thick PEDOT:PSS layer on the ITO receiver substrate considerably reduces the laser fluence required for pixel transfer from 250 mJ/cm(2) without the layer to only 80 mJ/cm(2) with the layer.

DOI: 10.1021/am100943f
PubMed: 21261274

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection.</title>
<author>
<name sortKey="Shaw Stewart, James" uniqKey="Shaw Stewart J">James Shaw-Stewart</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lippert, Thomas" uniqKey="Lippert T">Thomas Lippert</name>
</author>
<author>
<name sortKey="Nagel, Matthias" uniqKey="Nagel M">Matthias Nagel</name>
</author>
<author>
<name sortKey="N Esch, Frank" uniqKey="N Esch F">Frank Nüesch</name>
</author>
<author>
<name sortKey="Wokaun, Alexander" uniqKey="Wokaun A">Alexander Wokaun</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2011">2011</date>
<idno type="doi">10.1021/am100943f</idno>
<idno type="RBID">pubmed:21261274</idno>
<idno type="pmid">21261274</idno>
<idno type="wicri:Area/Main/Corpus">001599</idno>
<idno type="wicri:Area/Main/Curation">001599</idno>
<idno type="wicri:Area/Main/Exploration">001306</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Laser-induced forward transfer (LIFT) has been used to print 0.6 mm × 0.5 mm polymer light-emitting diode (PLED) pixels with poly[2-methoxy, 5-(2-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as the light-emitting polymer. The donor substrate used in the LIFT process is covered by a sacrificial triazene polymer (TP) release layer on top of which the aluminium cathode and functional MEH-PPV layers are deposited. To enhance electron injection into the MEH-PPV layer, a thin poly(ethylene oxide) (PEO) layer on the Al cathode or a blend of MEH-PPV and PEO was used. These donor substrates have been transferred onto both plain indium tin oxide (ITO) and bilayer ITO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) blend) receiver substrates to create the PLED pixels. For comparison, devices were fabricated in a conventional manner on ITO substrates coated with a PEDOT:PSS hole-transporting layer. Compared to multilayer devices without PEO, devices with ITO/PEDOT:PSS/MEH-PPV:PEO blend/Al architecture show a 100 fold increase of luminous efficiency (LE) reaching a maximum of 0.45 cd/A for the blend at a brightness of 400 cd/m(2). A similar increase is obtained for the polymer light-emitting diode (PLED) pixels deposited by the LIFT process, although the maximum luminous efficiency only reaches 0.05 cd/A for MEH-PPV:PEO blend, which we have attributed to the fact that LIFT transfer was carried out in an ambient atmosphere. For all devices, we confirm a strong increase in device performance and stability when using a PEDOT:PSS film on the ITO anode. For PLEDs produced by LIFT, we show that a 25 nm thick PEDOT:PSS layer on the ITO receiver substrate considerably reduces the laser fluence required for pixel transfer from 250 mJ/cm(2) without the layer to only 80 mJ/cm(2) with the layer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">21261274</PMID>
<DateCreated>
<Year>2011</Year>
<Month>02</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>07</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1944-8244</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>3</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection.</ArticleTitle>
<Pagination>
<MedlinePgn>309-16</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/am100943f</ELocationID>
<Abstract>
<AbstractText>Laser-induced forward transfer (LIFT) has been used to print 0.6 mm × 0.5 mm polymer light-emitting diode (PLED) pixels with poly[2-methoxy, 5-(2-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as the light-emitting polymer. The donor substrate used in the LIFT process is covered by a sacrificial triazene polymer (TP) release layer on top of which the aluminium cathode and functional MEH-PPV layers are deposited. To enhance electron injection into the MEH-PPV layer, a thin poly(ethylene oxide) (PEO) layer on the Al cathode or a blend of MEH-PPV and PEO was used. These donor substrates have been transferred onto both plain indium tin oxide (ITO) and bilayer ITO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) blend) receiver substrates to create the PLED pixels. For comparison, devices were fabricated in a conventional manner on ITO substrates coated with a PEDOT:PSS hole-transporting layer. Compared to multilayer devices without PEO, devices with ITO/PEDOT:PSS/MEH-PPV:PEO blend/Al architecture show a 100 fold increase of luminous efficiency (LE) reaching a maximum of 0.45 cd/A for the blend at a brightness of 400 cd/m(2). A similar increase is obtained for the polymer light-emitting diode (PLED) pixels deposited by the LIFT process, although the maximum luminous efficiency only reaches 0.05 cd/A for MEH-PPV:PEO blend, which we have attributed to the fact that LIFT transfer was carried out in an ambient atmosphere. For all devices, we confirm a strong increase in device performance and stability when using a PEDOT:PSS film on the ITO anode. For PLEDs produced by LIFT, we show that a 25 nm thick PEDOT:PSS layer on the ITO receiver substrate considerably reduces the laser fluence required for pixel transfer from 250 mJ/cm(2) without the layer to only 80 mJ/cm(2) with the layer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shaw-Stewart</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
<Affiliation>Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Lippert</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nagel</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nüesch</LastName>
<ForeName>Frank</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wokaun</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>01</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>1</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/am100943f</ArticleId>
<ArticleId IdType="pubmed">21261274</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001306 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001306 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21261274
   |texte=   Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21261274" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024